
DAY 7 

 

Summary of Topics Covered in Today’s Lecture 

 

 

Hyperbolic Trajectories 

If the system has even more energy 

that that needed for m to have a 

parabolic trajectory, then m will 

have a hyperbolic trajectory.  m 

does not even remotely begin to 

orbit M – rather, M’s “gravitational 

well” only deflects m as m passes by 

at high speed. 

The figures show a Hyperbolic 

Trajectory (in red) around central 

mass (in green) plotted on an 

equipotential plot and a surface 

plot of the potential function of 

the central mass showing the 

hyperbolic trajectory.   

 

 

 

 

 

The total energy in the system is 

 

Ehyperbolic = KE + PE > 0 

 

Thus the energy of an object in a 

hyperbolic trajectory is said to be 

positive, or greater than zero.  A 

hyperbolic trajectory will take an 

object to infinity and then some.   

 

Hyperbolic trajectory --  

“To Infinity… and Beyond!”  



Summary 

 

So, if a small object m is located a distance 

r from a much larger object M which does not 

move, and we launch m with speed v as shown in 

the figure at left, then the path m follows 

will depend on the speed v 

 

 If v = (GM/r)1/2 then m will orbit M in a circular path as 
shown by the black orbit in the figure below.  The energy 

of m is Ecircular = - ½ GMm/r < 0 

 

 If (GM/r)1/2  < v < (2GM/r)1/2 then m will orbit M in an 
elliptical path.  The higher v is (within this range), the 

more eccentric the shape of the ellipse will be (see figure 

below) and the further out m will move from M at its most 

extreme point. The energy of m is - ½ GMm/r < Eelliptical < 0   

 

 If v = (2GM/r)1/2 then m will travel away from M on a 
parabolic trajectory as shown by the dashed brown 

trajectory in the figure below.  The energy of m is  

Eparabolic = 0.  

 

 If v > (2GM/r)1/2 then m will travel away from M on a 
hyperbolic trajectory.  The more extreme v is, the flatter 

the trajectory will be.  The energy of m is Ehyperbolic > 0.   



A Gravity Example That Really Pushes Our Limits, Mathematically 

 

Today we did a series of example problems that started off being 

pretty easy but ended up being quite difficult.  Note, however, 

that they all use the same concepts.   

 

 
Example Problem #1 

 

An object of mass m is launched upward with speed vL from the Earth’s surface.  

The object stays close to Earth where the gravitational field strength g is a 

constant.  Derive an equation for the height the object reaches.  Derive an 

equation for the time the object is in the air.  Assume air friction does not 

convert a significant amount of the object’s energy to heat. 

 

Solution: 

In this problem I use the old PE = mgy formula for gravitational potential energy that is  
based on the assumption that the Earth’s gravitational field is constant. 
 

 



 

 
 

 

Example Problem #2 

 

An object is launched upward from the Earth’s surface at 30 m/s.  How high 

will it go and how long will it be in the air? 

  

Solution: 
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Example Problem #3 

 

An object of mass m is launched upward with speed vL from the Earth’s surface 

(or from just above the Earth’s atmosphere).  Derive an equation for the 

height the object reaches – no matter how high the object goes.  Derive an 

equation for the time the object is in the air.  Assume air friction does not 

convert a significant amount of the object’s energy to heat. 

 



Solution: 

Now I can’t assume the gravitational field is constant any more.  I have to use the new 
PE formula from Day 6 for a point mass 

r
MmGPE   

However, the basic idea is still the same. 

 



 
 

Example Problem #4 

 

An object is launched upward from the Earth’s surface at 30 m/s.  How high 

will it go, using this formula? 

 

Solution: 

The mass of Earth is M = 5.98x1024 kg 
The radius of Earth is rE = 6.37x106 m 
G = 6.67x10-11 Nm2/kg2 
vL = 30 m/s 
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Working the units out I get 
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So there I have it – h = 45.8 m.  Basically the same result as before. 
 

 



Example Problem #5 

 

An object is launched upward from the Earth’s surface at 10,000 m/s.  How 

high will it go, using this formula? 

 

Solution: 

The mass of Earth is M = 5.98x1024 kg 
The radius of Earth is rE = 6.37x106 m 
G = 6.67x10-11 Nm2/kg2 
vL = 10,000 m/s 
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So the object will reach a height of 25.2 million meters.  To give an idea 
how far that it, the radius of Earth is 6.37 million meters, so the 
diameter is 12.74 million meters.  Therefore if the object is 
launched from near Earth’s surface at that speed, it will rise to 
about 2 Earth diameters above the surface, as shown in the 
figure at right. 
 

 

Example Problem #6 

 

What speed is needed to launch an object out to the distance of the Moon’s 

orbit, and how long will it take to go out and come back?   

 

Solution: 

The mass of Earth is M = 5.98x1024 kg 
The radius of Earth is rE = 6.37x106 m 
G = 6.67x10-11 Nm2/kg2 
 
Distance of Moon’s orbit = 3.84 x 108 m so Re+h = 3.84 x 108 m 
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First I re-write this in terms of vL: 
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and now let’s “plug-n-chug”: 
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So it must be launched at a speed of 11,100 m/s (24,800 mph) to reach the distance of 
the moon’s orbit. 
 
Figuring the time is a tougher issue.  I have to use a spreadsheet to estimate the time.  
None of these answers depend on mass, but I’ll need to pick a mass for my spreadsheet.  
Let’s say 100 kg.  Now I’ll figure the total energy the object has at Earth’s surface when 
it is launched at 11,097.5 m/s. 

 
Note that the total energy is negative, as it should be 
if the object is not going to escape Earth totally. 
 
Now, for a variety of heights I calculate the PE of 
the object.  Note that the first row, with h=0, gives 
me my original PE.  I’m incrementing my heights in 
steps of 10,000,000 m. 

 
Now I add a column for the total 
energy (which does not change), 
and take the difference between 
the total energy and the PE to 
get the KE. 

 
Since KE = ½mv2 
I can solve for v … (v = 2KE/m)½  
I add a column for that, too. 

 
 



Now I look at this.  This is just an estimate, but for the 1st 10,000,000 m of travel, the 
object starts at 11,097.5 m/s and ends at 6830.314122 m/s.  The average speed here is 
8963.907061 m/s.  With a distance of 10,000,000 m and an average speed of 8963.907061 
m/s, I can figure the time to cover that first 10,000,000 m is  
 
t = 10,000,000 m /(8963.907061 m/s) = 1115.585 s 
 
I’ll so this for every 10,000,000 m increment: 

 
 
I extend the table on down until I reach the height of the orbit of the moon (where r = 
3.84 x 108 m).  Going beyond that is asking the spreadsheet to take the square root of a 
negative number, which it will not do. 

 
 
Now I have a huge list of times – one for every 10,000,000 m of travel.  I add up all 
these to get the time going up to the Moon’s orbit. 

 
My answer for the time going up is 343283.0786 sec.  The total time is then 686566.1572 
sec or 8 days. 
 
This is only an estimate.  If I make my increments smaller the estimate gets better.  Using 
1,000,000 m increments I get about 9.5 days, which is close to the true value. 



FOR PHYSICS 232 ONLY 
 
To get a true value requires the use of calculus.  I’ll use the basic definition of v and 
combine it with the energy stuff I’ll been doing so far: 

 
 



 
 



 
 

I’m going to feed this integral to some computer integration program. 
 

Re+h = 3.84 x 108 m = 384,000,000 m 
Re = 6.37 x 106 m = 6,370,000 m 

 
Plugging the numbers in I get the integral to be 1.18 x 1013.  I still include the value in front of 
the integral so 
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For the full trip (up and down), we get 8.36x105 seconds or 9.7 days! Years ago I did this problem 
with a class and we had to use a TI-92 calculator to do the integration and it was much 
tougher, and before that this sort of problem was almost impossible.  Isn’t technology 
wonderful?  


