DAY 16

Summary of Topics Covered in Today’s Lecture

Damped Oscillations

In a Simple Harmonic Oscillator energy oscillates entirely
between Kinetic Energy of the mass and Elastic Potential Energy
stored in the spring. The total Energy in the system does not
change, so a SHO will oscillate forever.

In most oscillators, however,

there is friction. A simple

friction force is that produced by viscous fluids, where the
drag force on an object moving with velocity v is given by

Fiorag = — b v. If there is a drag force in the oscillator then we
can find the equation of motion of the “damped” oscillator by
using Newton’s Second Law of motion:

F = m a:
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We need more math than just algebra to be
able to prove what the solution for this
motion is, so we’ll just state it:
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Note that in this treatment we are using the cosine function
instead of the using the sine function like we did last class.
This is just because the starting point is more convenient to
show the exponential part of damped oscillations. Both sine &
cosine are “sinusoidal” - they are exactly the same in their
shape. Either can be used.



The Driven Harmonic Oscillator and Resonance

Now let’s consider the case where we add something to our damped
oscillator that drives it to oscillate. We can produce an
external driving force by having the oscillator hanging from a
string that is pulled back and forth by a rotating wheel.

Lets suppose that our driver produces a sinusoidal external

driving force of Fp = Fext cOos(® t). Now we add this into our
Newton’s Second Law equation to get an equation for this system:
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Again, we need more math than just

algebra to be able to prove what the
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A graph of the equation
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in which we plot A vs. ®p looks something like this (for the
underdamped case) :
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Because so many things act like harmonic oscillators (because so
many materials are elastic), resonant behavior shows up
everywhere. From the vibrations of bridges and buildings to
musical instruments to that odd rattle in your car that only
appears at a particular speed, resonance is everywhere.



The Steady-State Picture

These pictures of oscillators involve are valid only for the
“long-term” or “steady-state” case. If you start driving any
oscillator, it will eventually settle down into the kinds of
motion we’ve discussed here. However, when you first start an
oscillator moving, it may do a lot of weird things before
settling down into its long-term motion. The initial behavior
of oscillators is called *“transient” behavior and is beyond what
we can do in this course.

Example Problem #1

An oscillator with mass 10 kg and undamped frequency of 2 Hz is driven by a
driving force of amplitude 5 N.

(a) Determine the spring constant of the oscillator.
(b) Determine what damping coefficient is require for critical damping.
(c) Make plots of Amplitude vs. driving frequency (in Hz) if the

oscillator is lightly damped, underdamped, critically damped, and
overdamped. Use EXCEL and plot from f, = 0 to f, = 4 Hz
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So k = 1579 N/m.

Now I canh use K & m to find the CritiCal damping coefficient:
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T'm going to use EXCEL to do all this. Tl substitute 2nf for win my Amplitude
equation, and use the external driving force, K, ahd b in the equation:
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First Tll do the critically damped case.

bc = 251.327

A = (5/10%((2%3.14159%F)~2 — 1579.14/10)~2 + (251.327*2*3.14159*f/10)~2)~-0.5
That's what is going into EXCEL.

For lightly damped T'll use b = .1 be.

For underdamped T'Il use b = .5 be.

For overdamped Tl use b = 1.5 bc.

1 arrived at these values by trial and error.

Then it was so easy to make graphs with EXCEL that ] added plots for b = .01 be, b = .25
be, anhd b = 5 be, just for Kicks. Here are the results:



——h = critical
—hb =1 x crtical
=—h = 5 x crtical
— b =15« critical
—h =01 x critical
b = .25 x critical
— b =5« critical

Amplitude (meters)

na 1 1.5 2 20 3 38 4 45

Driving Frequency {Hz)

Note that at Very low frequencies the amplitudes are all the same. That’s because if
the oscCillator is moving slowly enough the drag force is negligible.



