
DAY 16 

 

Summary of Topics Covered in Today’s Lecture 

 

Damped Oscillations 

 

In a Simple Harmonic Oscillator energy oscillates entirely 

between Kinetic Energy of the mass and Elastic Potential Energy 

stored in the spring.  The total Energy in the system does not 

change, so a SHO will oscillate forever. 

 

In most oscillators, however, there is friction.  A simple 

friction force is that produced by viscous fluids, where the 

drag force on an object moving with velocity v is given by  

Fdrag = - b v.  If there is a drag force in the oscillator then we 

can find the equation of motion of the “damped” oscillator by 

using Newton’s Second Law of motion:   

ΣF = m a: 
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We need more math than just algebra to be 

able to prove what the solution for this 

motion is, so we’ll just state it: 

 

 

 

 

   



 



 

Note that in this treatment we are using the cosine function 

instead of the using the sine function like we did last class.  

This is just because the starting point is more convenient to 

show the exponential part of damped oscillations.  Both sine & 

cosine are “sinusoidal” – they are exactly the same in their 

shape.  Either can be used. 



The Driven Harmonic Oscillator and Resonance 

  

Now let’s consider the case where we add something to our damped 

oscillator that drives it to oscillate.  We can produce an 

external driving force by having the oscillator hanging from a 

string that is pulled back and forth by a rotating wheel.   

 

Lets suppose that our driver produces a sinusoidal external 

driving force of FD = Fext cos(ωD t).  Now we add this into our 

Newton’s Second Law equation to get an equation for this system: 
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Again, we need more math than just 

algebra to be able to prove what the 

solution for this motion is, so we’ll 

just state it: 

 

 

 

 
   

 



A graph of the equation  

 

in which we plot A vs. ωD looks something like this (for the 

underdamped case): 

 

 
 

Because so many things act like harmonic oscillators (because so 

many materials are elastic), resonant behavior shows up 

everywhere.  From the vibrations of bridges and buildings to 

musical instruments to that odd rattle in your car that only 

appears at a particular speed, resonance is everywhere. 

 

 



The Steady-State Picture 

  

These pictures of oscillators involve are valid only for the 

“long-term” or “steady-state” case.  If you start driving any 

oscillator, it will eventually settle down into the kinds of 

motion we’ve discussed here.  However, when you first start an 

oscillator moving, it may do a lot of weird things before 

settling down into its long-term motion.  The initial behavior 

of oscillators is called “transient” behavior and is beyond what 

we can do in this course. 

  

 
Example Problem #1 

 

An oscillator with mass 10 kg and undamped frequency of 2 Hz is driven by a 

driving force of amplitude 5 N.   

 

(a) Determine the spring constant of the oscillator. 
(b) Determine what damping coefficient is require for critical damping. 
(c) Make plots of Amplitude vs. driving frequency (in Hz) if the 

oscillator is lightly damped, underdamped, critically damped, and 

overdamped.  Use EXCEL and plot from fD = 0 to fD = 4 Hz 

 

Solution: 

 

 
 

So k = 1579 N/m. 

 

Now I can use k & m to find the critical damping coefficient: 
 



 
 

bc = 251 kg/s. 

 

I’m going to use EXCEL to do all this.  I’ll substitute 2πf for ω in my Amplitude 

equation, and use the external driving force, k, and b in the equation: 
 

 
 

First I’ll do the critically damped case.  

 

bc = 251.327 

 

A = (5/10)*((2*3.14159*f)^2 – 1579.14/10)^2 + (251.327*2*3.14159*f/10)^2)^-0.5 

 

That’s what is going into EXCEL. 

 

For lightly damped I’ll use b = .1 bc. 

For underdamped I’ll use b = .5 bc. 

For overdamped I’ll use b = 1.5 bc. 

I arrived at these values by trial and error. 

 

Then it was so easy to make graphs with EXCEL that I added plots for b = .01 bc, b = .25 

bc, and b = 5 bc, just for kicks.  Here are the results: 
 



 
 

Note that at very low frequencies the amplitudes are all the same.  That’s because if 

the oscillator is moving slowly enough the drag force is negligible. 


