
DAY 12 

 
Summary of Topics Covered in Today’s Lecture 

 
 

Magnetic Fields Exert Torques on a Loop of Current 
 
Imagine a wire 
bent into the 
shape of a 
rectangle with 
height h and width 
w.  The wire 
carries a current 
I.  This 
rectangular loop 
of wire is placed 
in a magnetic 
field so that the 
plane of the loop 
is perpendicular 
to the field as 
shown below. 
 
The force on each 
side of the loop 
is equal to the 
current times the 
length of that 
side times the 
magnetic field 
strength.  The direction of each force is as shown, according to 

the RHR.  All the forces cancel out, so ΣF = 0. All the forces 
lie in the same plane, so there are no torques on the loop, 

either, meaning Στ = 0.  The loop does not move. 



 
 
However, if the 
rectangular loop of 
wire is placed in a 
magnetic field so that 
the plane of the loop 
is parallel to the 
field as shown at 
left, the situation is 
somewhat different. 
 
First, there is no 
force on the top and 
bottom of the loop.  
That is because in 
those sections of the 
loop the current runs 
parallel to the field, 
and the cross product 
of two parallel 
quantities is zero. 
 
Second, the forces on 
the sides are once 
again equal to the current times the length of that side times 
the magnetic field strength.  Once again they point in opposite 

directions, so they cancel out and ΣF = 0 for the loop.  However, 
they are not in the same plane.  Each force is acting at the end 
of a level arm whose length is ½ w.  The torque created by each 
of these forces is 
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Since there are two torques the net torque on the loop is 
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However, the width (w) times the height (h) is just the area of 
the loop, so the net torque on the loop is just 
 

∑ = IABτ  

 



This is the maximum torque that a current loop in a uniform 
magnetic field can experience – and it occurs when the plane of 
the loop is parallel to the field.  The minimum torque is of 
course zero – and it occurs when the plane of the loop is 
perpendicular to the field. 
 
Torque on a current loop is the basic principle behind the 
electric motor. 
 
 

A Non-Uniform Magnetic Field 

 

 

 

 

 



Magnets Attracting Materials 

 
Atoms consist of a 
positive nucleus with 
negative electrons 
orbiting about it.  A 
primitive picture of 
an atom would be 
something like the 
figure at left. 
 
The motion of the 
electrons is a 
current, and the 
overall motion of 

electrons produces the equivalent of a 
current loop as in the figure at right. 
 
One could see that the number of electrons 
and the arrangements of their orbits might 
influence the “current loop effect”.   
 
In reality the shapes of the “orbitals” of electrons around 
atoms are very complex.  They do not look like the simple paths 
shown in the figures above, but instead look something like the 
figures below. 
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http://www.shef.ac.uk/chemistry/orbitron/AOs/4f/index.html 

 
However, the basic idea of electron motion creating what is 
essentially a current loop within the atom still stands.  The 
structure of the electron orbitals determines how significant 
the “current loop effect” is and how it behaves.  This “current 
loop” can then be attracted to a magnetic pole. 
 



In most materials the atomic current loops are more or less 
randomly oriented.  When the material is placed in a magnetic 
field the loops tend to orient themselves with that field.  
Materials are classified by whether their atomic current loops 
orient themselves so as to be attracted to a magnetic pole or 
repelled from a magnetic pole.  If the material tends to be 
attracted to a magnetic pole it is said to be paramagnetic 
(paramagnetic materials include Aluminum and Oxygen).  If it 
tends to be repelled it is said to be diamagnetic (diamagnetic 
materials include Copper, Gold, and Mercury).  If the material 
is strongly attracted to a magnetic pole it is said to be 
ferromagnetic (ferromagnetic materials include Iron, Nickel, and 
Cobalt). 
 
 
The Source of Magnetic Fields 

 
Magnetic fields may exert forces on moving charges, but they are 
also generated by moving charges.  Experiments show that a wire 
carrying current generates a magnetic field around it: 
 
B-field vectors:  B-field lines: 

 

 

 

 
Symmetry requires that the magnetic field be radially symmetric 
in this case.  The direction of the field is given by another 
version of the Right-Hand-Rule – if you point the thumb of your 
right hand in the direction of the current your fingers will 
curl in the direction of the B-field. 
 
Note that the wire does not produce recognizable magnetic poles.   

 



PHY 232 Only 

 
In mathematical form, 
Ampere’s Law is 
written as the 
integral of field and 
distance around a 
closed path 
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The magnetic field produced by a 
current can be determined by 
Ampere’s Law. Ampere’s law says 
that if you follow a closed path, 
the product of the distance along 

that path and the B-field parallel 

to that distance is equal to the 

current flowing through that 

closed path, times a constant 

known as the permeability of free 

space (the constant is written as 

µ0 = 4π x 10-7 N/A2). 
 
Ampere’s Law is a calculus law, 
but the fact is most of the time 
you solve it by simple geometric 
means (see the example problems). 

 
 

 

 
The Magnetic Field of a Loop – and of Many Loops 

 
If two wires with current are brought close to one another you 
get a result something like this: 
 

 
 
Bringing them a little closer together we see that their 
magnetic fields point in the same direction between the wires, 
but in opposite directions outside the wires. 
 



 
 
The result is this (showing both field lines and field vectors 
in this picture): 
 

 
 

If a wire is bent into a loop, then on one 
side current is flowing one way, and on 
the other the current is flowing in the 
opposite direction.  This is similar to 
the two straight wires problem given 
above.  As seen at right, the field for a 
coil looks similar to the field for the 
two wires, at least when viewed edge-on.  
Of course if your rotated the figure at 
right by 90o to the left it would look no 
different.  If you rotated the “two wires” 
figure above by 90o to the left then you’d 
be looking at two long straight wires 
sitting horizontally.  



 
 
  

Note that the field produced by a loop of 
wire also has a recognizable North Pole 
and South Pole.  What makes a North Pole?  
The divergence of field lines in the case 
of North Poles.  What make a South Pole?  
The convergence of field lines. 
 
This kind of magnetic field -- one with 
two poles that face away from each other 
-- is known as a magnetic dipole.  
Current loops are always magnetic 
dipoles. 
 
 

 
If we put many current loops together we get 
a coil, or solenoid.  The field inside a 
solenoid is relatively uniform and is given 
by 
 

I
L

N
B

0
µ=  

 
Here N is the number of loops in the 
solenoid, L is the length of the solenoid, 
and I is the current flowing through the 
solenoid. 
 
This is how a typical electromagnet is constructed. 
 
 



Example Problem #1 

 

A motor is constructed of an “armature” of 1000 loops of wire round into a 
circle of radius 10 cm.  The armature is placed in a magnetic field of 
strength 5 T and a current of 2 A passes through it.  Find the maximum torque 
the motor can generate.  If the motor spins at 750 RPM, what is the maximum 
power it can generate? 
 

 

Solution: 

 

Torque on one loop is 

 

τ = IAB 

 

A = πr2 
 

τ = πr2IB = 3.1416(.1 m)2(2 A)(5 T) 

         = .31416 m2(A)(N/Am)                   Cancel out the A and m 

         = .31416 Nm 

 

Maximum torque is .31416 Nm or π/10 Nm. 

The torque for all 1000 loops is then 314.16 Nm. 

 

To figure the power I have to go back to Physics 1: 

 

P = τ ω 
 

ω = 750 RPM = 12.5 rev/sec = 25 π 1/sec 
 

P = (314.16 Nm)(25 π 1/sec) = 7854 π J/sec               1 Nm = 1 J 

  = 24674 W 

  = 33.1 Hp                                             746 W = 1 Hp 

 

The maximum power output of the motor is 33.1 Hp. 

Of course the maximum torque cannot be maintained, so this figure is somewhat high.    



Example Problem #2 (PHY 232 ONLY) 

 

 
 

http://www.brookscole.com/physics_d/templates/student_resources/003026961X_serway/guide/ch29-21.html 

 
 

Example Problem #3 

 

Use Ampere’s Law to determine the magnetic field produced by a long straight 
wire carrying current I.  What is the magnetic field 1 cm from a wire 
carrying 10 A of current? 
 

Algebra Solution: 

 

The field around a wire is circular.  So, I will 

use an Ampere’s law path that is a circle, 

centered on the wire.  The current enclosed 

by the path is just I. 

 

The distance around a circular path is just the 

circumference:  2πr. 
 

Since the problem is radially symmetric BBBB can’t 

change as I go around the path.  Ampere’s Law 



says the product of B and the distance around must equal µ0 Ienclosed.  So this means 

 

B (2πr) = µ0 Ienclosed 

    

So B = µ0Ienclosed/(2πr) 
 

Now to calculate the field: 

 

I = 10 A 

r = 1 cm = .01 m 

µ0 = 4p x 10
-7 N/A2 

 

B = (4π x 10-7 N/A2)(10 A)/(2 π .01 m) = .0002 N/Am = 0.2 mT 

 

The field is 0.2 milliTeslas. 
 

 

 

Calculus (PHY 232 ONLY) Solution: 

 

The field around a wire 

is circular.  So, I will 

use an Ampere’s law 

path that is a circle, 

centered on the wire.  

The current enclosed 

by the path is just I. 

 

(The algebra solution 

can be used for some 

problems.  But to be 

able to solve all 

problems requires 

knowledge of calculus.) 

 

Now to calculate the 

field: 

 

I = 10 A 

r = 1 cm = .01 m 

µ0 = 4π x 10
-7 N/A2 

 

B = (4π x 10-7 N/A2)(10 

A)/(2 π .01 m) = .0002 

N/Am = 0.2 mT 

 

The field is 0.2 

milliTeslas. 


