DAY 28

1. A typical chest X-ray results in an exposure of 10 milliREM. How many chest X-rays would be required to equal the occupational exposure of a hospital radiologist.
2. What is the LLE involved in receiving a chest X-ray?
3. A 50 kg woman receives a 5 milliREM dose of γ rays. How much energy (in J) did she absorb?
4. A 50 kg woman receives a 5 milliREM dose of α radiation. How much energy (in J) did she absorb?
5. Rework the Co-60 example problem, but assume the radioisotope in the box is Iodine-131 instead of Co-60.
6. A 600 REM exposure is almost always fatal. For a person who weighs 160 lb, how much absorbed energy is that? Compare this energy to the Kinetic Energy of a 500 ml bottle of water tossed to you at a speed of $5 \mathrm{~m} / \mathrm{s}$ and discuss your answer.
7. In the Radon example, all the reactions that follow the decay of Radon-222 were written out. Write out all that precede Radon-222 in the Uranium-238 decay series.
8. Molybdenum-99 is unstable. Use the Periodic Table with Isotope Information to determine how it decays. If the daughter formed from the decay of Mo-99 is unstable, follow the decay series until a stable product is formed.
9. How many Joules of β radiation must a 130 lb woman absorb before she will start having significant blood damage?
10. PHY 232 Only:

In a decay series, parent nucleus A decays into daughter nucleus B, which decays into "granddaughter" nucleus C. A has half-life $\mathrm{T}_{1 / 2 \mathrm{~A}}$ and decay constant λ_{A}, B has half-life $\mathrm{T}_{1 / 3 \mathrm{~B}}$ and decay constant $\boldsymbol{\lambda}_{\mathrm{A}}$, and C is stable. We start with N_{0} nuclei (all A). Obtain a formula for the time at which the number of B^{\prime} s reaches a maximum?
11. PHY 232 Only:

In the above problem, at what time is the number of $\mathrm{B}^{\prime} \mathrm{s}$ at a maximum if $\mathrm{T}_{1 / 2 \mathrm{~A}}=10$ years and $\mathrm{T}_{1 / 2 \mathrm{~B}}=2$ years. What if these values are reversed?

