DAY 7 -- PHY 231 ONLY

Summary of Primary Topics Covered

Calculus with Energy and Power

```
In calss we often mentioned the calculus versions of various
algebra equations. For example
\begin{tabular}{cc} 
Algebra & Calculus \\
\(a=\Delta v / t\) & \(a=d v / d t\) \\
\(P=E / t\) & \(P=d E / d t\)
\end{tabular}
One powerful use of calculus comes from using a computer to "fit" an equation to data so that we can then analyze the equation via calculus.
```


Momentum and Newton's $2^{\text {nd }}$ Law of Motion the way Newton wrote it

```
NF=\Deltap/t is actually closer to the way Newton actually wrote
the 2 nd law. Newton wrote the second law in derivative form in
terms of momentum:
\SigmaF=dp/dt
since p = m v, you can use the Chain Rule on this
\SigmaF=dp/dt
\SigmaF=d(mv)/dt
\sumF=m(dv/dt) + (dm/dt)v
If mass is constant then dm/dt = 0.
a = dv/dt so we plug that in and get
\SigmaF=m(a) + 0(v)
and that gives us the Newton's 2 nd Law we know.
\SigmaF=ma
BUT, if mass is not constant then dm/dt is not zero.
a = dv/dt
```

$\Sigma F=m(a)+(d m / d t) v$
so we get a different form of Newton's $2^{\text {nd }}$ Law.
$\Sigma F=m a+(d m / d t) v$

This is actually the full form of Newton's $2^{\text {nd }}$ Law. We use it when mass is changing - like in a rocket that is burning up fuel and therefore losing mass.

Example Problem \#1 (PHY 231 ONLY):

A motor is used to lift a 400 kg mass. Here is data on the height of the mass vs. time, where $t=0$ when the lift is turned on. (a) Obtain an equation for the Energy of the mass as a function of time, and use that equation to get the power output of the motor as a function of time. (b) Graph the power output as a function of time. (c) If the motor consumes a steady 2000 W of electric power, when it the most heat being generated?

Time (s)	Height (m)
0	0
5	0.5
10	0.75
15	1.5
20	3
25	5
30	7
35	9
40	11

First I use EXCEL to calculate the PE of the mass at each time. Then I make a graph of PE vs. time. Then I fit a trend line to the graph. A $5^{\text {th }}$ order polynomial fit the points well.

The computer gave me the equation

$$
y=0.0028 x^{5}-0.3148 x^{4}+11.998 x^{3}-151.72 x^{2}+892.58 x-2.2844
$$

which in terms of what is plotted (Energy is y, time is x) is really
$E=0.0028 t^{5}-0.3148 t^{4}+11.998 t^{3}-151.72 t^{2}+892.58 t-2.2844$
The power that went into giving the mass PE is given by
$P=d E / d t$
$P=d / d t\left(0.0028 t^{5}-0.3148 t^{4}+11.998 t^{3}-151.72 t^{2}+892.58 t-2.2844\right)$
$P=0.014 t^{4}-1.2592 t^{3}+35.994 t^{2}-303.44 t+892.58$
Graphing this using EXCEL gives me the plot below. I see there is an initial surge of power, then a drop, then the power rises and at around $t=20$ seconds becomes more or less constant at roughly 1500 W .

The most heat is being generated at the point where the least power is going into lifting the object. That would seem to be at t $=5$ seconds, where less than 100 W of power was going into lifting the mass. Presumably the rest was going into heat. Maybe a belt was slipping somewhere.

Example Problem \#2 (PHY 231 ONLY):

```
A rocket in space (no forces acting on it other than its engine) has
the following characteristics:
Mass = 1000 kg
Rate of fuel consumption = 1 kg/s
Velocity = 500 m/s
Engine Thrust = 2000 N
What is the rocket's acceleration? Does the fuel consumption
significantly affect the acceleration?
```

```
        \SigmaF=ma+(dm/dt)v
    2000 N = 1000 kg (a) + (-1 kg/s) 500 m/s
2000 kgm/s}\mp@subsup{}{}{2}=1000\textrm{kg}(\textrm{a})-500\textrm{kgm}/\mp@subsup{\textrm{s}}{}{2
    2500 m/\mp@subsup{s}{}{2}=1000 a
    2.500 m/\mp@subsup{s}{}{2}=a
```


ANSWER: $2.5 \mathrm{~m} / \mathrm{s}^{2}$

If we ignore the mass loss and assume constant mass, then we get

$$
\begin{aligned}
\Sigma F & =\mathrm{ma} \\
2000 \mathrm{kgm} / \mathrm{s}^{2} & =1000 \mathrm{~kg}(\mathrm{a}) \\
2000 \mathrm{~m} / \mathrm{s}^{2} & =1000 \mathrm{a}
\end{aligned}
$$

$$
2.000 \mathrm{~m} / \mathrm{s}^{2}=\text { a } \quad 2.5 \mathrm{Vs} .2 .0 \text { is a } 25 \% \text { difference. The fuel consumption }
$$ affects the acceleration significantly.

