DAY 5
Summary of Primary Topics Covered
Kinematic Equations
The Kinematic Equations represent no new knowledge. They are simply a re-arranging of the equations for average acceleration, and average velocity, that we have already learned.

First I write starting and ending values a certain way:

velocity
position

Ending
\checkmark
Change $\Delta V=V-V_{0}$
$X \quad \Delta X=X-X_{0}$

Now I use these in the equations that I've learned so far...

$$
\begin{array}{ll}
a_{\text {avg }}=\frac{\Delta v}{t}=\frac{V-v_{0}}{t} & \text { Acceleration (equation A) } \\
v_{\text {avg }}=\frac{\Delta x}{t}=\frac{x-x_{0}}{t} & \text { Velocity } \\
\text { (equation B) } \\
v_{\text {avg }}=\frac{v_{0}+v}{2} & \\
& \text { Averaging velocity } \\
\text { (equation C) }
\end{array}
$$

... and I labelled them

$$
A, B,+C
$$

Equations $B+C$ are both for V avg, so they must be equal...

$$
\begin{array}{ll}
V_{\text {avg }}=V_{\text {avg }} \\
\frac{x-x_{0}}{t}=\frac{v_{0}+v}{2} \quad \text { multiply through by "t" } \\
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t
\end{array} \quad \text { Isl call this }
$$

Now re-arrange equation $A \ldots$

$$
\begin{aligned}
& a_{\text {avg }}=\frac{v-v_{0}}{t} \\
& a_{\text {avg }} t=v-v_{0} \\
& v_{0}+a_{\text {avg }} t=v
\end{aligned}
$$

multiplying through by "t"
bringing Vo over

$$
V=V_{0}+a_{\text {avg }} t \curvearrowleft \text { Equation } 2
$$

Now play equation 2 into equation 1

$$
x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t \quad \text { equation } 1
$$

$$
V=V_{0}+a t
$$

equation 2 goes in for $V^{\prime \prime}$

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2}\left(v_{0}+v_{0}+a_{\text {avg }} t\right) t \\
& x=x_{0}+\frac{1}{2} v_{0} t+\frac{1}{2} v_{0} t+\frac{1}{2} a_{\text {avg }} t(t) \\
& x=x_{0}+v_{0} t+\frac{1}{2} a_{\text {avg }} t^{2} \quad \text { Equation } 3
\end{aligned}
$$

Finally, play equation A into equation 1

$$
x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t \quad \text { equation } 1
$$

$$
a_{\text {avg }}=\frac{V-v_{0}}{t} \text { equation A }
$$

$t=\frac{V-V_{0}}{a_{\text {any }}}$ this yous in for " t "

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2}\left(v_{0}+v\right)\left(\frac{v-v_{0}}{a_{\text {avg }}}\right) \\
& x-x_{0}=\frac{\left(v+v_{0}\right)\left(v-v_{0}\right)}{2 a_{\text {avg }}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 a_{\text {avg }}\left(x-x_{0}\right)=\left(v+v_{0}\right)\left(v-v_{0}\right) \\
& 2 a_{\text {avg }}\left(x-x_{0}\right)=v^{2}-v_{0}^{2} \\
& v^{2}=v_{0}^{2}+2 a_{\text {avg }}\left(x-x_{0}\right)^{<\text {Equation } 4}
\end{aligned}
$$

The four equations derived here are the kinematic equations:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}_{0}+\frac{1 / 2}{2}\left(v+v_{0}\right) t \\
& \mathbf{v}=v_{0}+a_{a v g} t \\
& \mathbf{x}=x_{0}+v_{0} t+1 / 2 a_{a v g} t^{2} \\
& \mathbf{v}^{2}=v_{0}^{2}+2 a_{a v g}\left(x-x_{0}\right)
\end{aligned}
$$

While we could solve problems just using $a_{a v g}=\Delta v / t$ and $v_{\text {avg }}=$ $\Delta v / t$, with the kinematic equations we can solve problems more easily. They are very convenient.

Example
Problem \#1:
A boat of mass 1500 kg is moving at a steady 30 mph across the water.
(a) What is the net force on the boat?

The engine is then cut, and the boat comes to rest in 5 seconds.
(b) What is the boat's acceleration?
(c) How far does the boat move in coming to a halt?
(d) What is the net force on the boat?

30 mph

$$
t=0
$$

$$
t=5 \mathrm{sec}
$$

FIRST-
$\left.\begin{array}{l}\text { FIRST- } \\ \text { Metric units: } \quad 30 \mathrm{mph} \\ 2.239 \mathrm{mph}\end{array}\right)=13.411 \mathrm{~m} / \mathrm{s}$

* Boat is moving at a constant 30 mph so it is not accelerating. Therefore net force on boat is zero.

SECOND -
Ill identify as many variables as I can:

$$
\begin{aligned}
& V_{0}=13.411 \mathrm{~m} / \mathrm{s} \\
& v=0 \\
& x_{0}=0 \\
& x=? \\
& a_{\text {ono }}=? \\
& t=5 \mathrm{sec}
\end{aligned}
$$

Use $V=V_{0}+a_{\text {nanjing }} t$ to find $a_{\text {aug }}$:

$$
\begin{aligned}
& 0=13.411 \mathrm{~m} / \mathrm{s}+a_{\text {aug }}(5 \mathrm{~s}) \\
& -\frac{13.411 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=a_{\text {aug }} \\
& a_{\text {avg }}=-2.682 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Now use

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2}\left(u+v_{0}\right) t \text { to find } x: \\
& x=0+\frac{1}{2}(0+13.411 \mathrm{~m} / \mathrm{s}) 5 \mathrm{~s} \\
& x=33.52^{7} 75 \mathrm{~m}
\end{aligned}
$$

Answers:

* $-2.68 \mathrm{~m} / \mathrm{s}^{2}$ is the boat's acceleration
* The boat moves 33.5 m (110 ft) while stopping.
* The net fire on the boat when stopping is $-4023 \mathrm{~N}(-905 \mathrm{lbs})$. That fuse is to the rear of the boat

Example Problem \#2:

Big brother challenges little brother to a bike race. They are going to race to a fire hydrant 50 m away. Big Bro tells Li'l Bro that he can have a running start. So Li'l Bro gets going as fast as he can (7 $\mathrm{m} / \mathrm{s})$ and, as he races past Big Bro, Big Bro takes off from rest with a constant acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. Li'l Bro stays at $7 \mathrm{~m} / \mathrm{s}$ the whole way, pedaling as hard as he can. Who gets to the hydrant first? What is the gap between them when the first one
reaches
the
hydrant?
Where does Big Bro overtake Li'l Bro?

The hydrant is at $x=50 \mathrm{~m}$. Plug this in for x in each bro's equation to find time to get to ny dint. $50 \mathrm{~m}=7 \mathrm{~m} / \mathrm{s} t \quad 50 \mathrm{~m}=1.25 \mathrm{~m} / \mathrm{s}^{2} t^{2}$

$$
t=\frac{50 \mathrm{~m}}{7 m_{s}}=7.1429 \mathrm{~s}
$$

$$
t=\sqrt{\frac{50^{4}}{1.250 / s^{2}}}=6.3246 \mathrm{~s}
$$

So Big Bro gets to hyplint first, at $t=6.3 \mathrm{sec}$.
When Big Boo is at hydrant at $t=6.3246 \mathrm{~s}$, where is Lit Bro?

$$
x=7 \mathrm{~m} / \mathrm{s}(6.3246 \mathrm{~s})=44.2719 \mathrm{~m}
$$

whee does Big Bro catch up? He catches up when their positions are equal:

$$
\begin{aligned}
& 7 \mathrm{~m} / \mathrm{s} t=1.25 \mathrm{~m} / \mathrm{s}^{2} t^{2} \\
& \frac{7 \mathrm{~m} / \mathrm{s}}{1.25^{5} / \mathrm{s}^{2}}=t=5.6 \mathrm{sec}
\end{aligned}
$$

So what ore the positive?

$$
\begin{aligned}
& x=7 \mathrm{~m} / \mathrm{s}(5.6 \mathrm{~s})=39.2 \mathrm{~m} \quad \text { Lit Bro } \\
& x=1.25 \mathrm{~m} / \mathrm{s}^{2}(5.6 \mathrm{~s})^{2}=39.2 \mathrm{~m} \quad \text { Big Bro }
\end{aligned}
$$

ANSWERS:

* Big Bro reaches hydrant first (at 6.3 sec us. 7.1s)
* When Big Bro is at hyobent (50 m), Nil Bro is at 44.3 m . Theses a 5.7 m gap between them. * Big Bro catches up to $L^{-1} 1$ Bro after 5.6 sec , at the 39.2 m mark.
Start $(t=0)$

Eddy in race $(0<t<5.65$)

$$
\text { of } \rightarrow
$$

Om
Catches Lill Bro $(t=5.6 \mathrm{sec})$

Ont

Big Bro wins ($t=6.3 \mathrm{sec}$)
$0 n$

