DAY 4

Summary of Primary Topics Covered

Energy & Power with Math

Kinetic Energy:

$$KE = \frac{1}{2}mv^2$$

SI energy units are kgm^2/s^2 , also known as Nm, also known as Joules (J).

Gravitational Potential Energy:

$$PE_{Grav} = mgy$$

 $PE_{_{Grav}} = mgy$ g is the gravitational field strength At the surface of the Earth this is g is the gravitational field strength.

$$g = 9.8 \text{ N/kg} = 2.203 \text{ lb/kg}$$

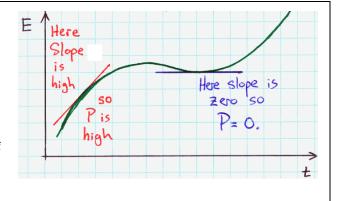
meaning that gravity pulls a 1 kg object to the Earth with a force of 9.8 N or 2.203 lb.

Elastic Potential Energy:

$$PE_{Elastic} = \frac{1}{2}kx$$

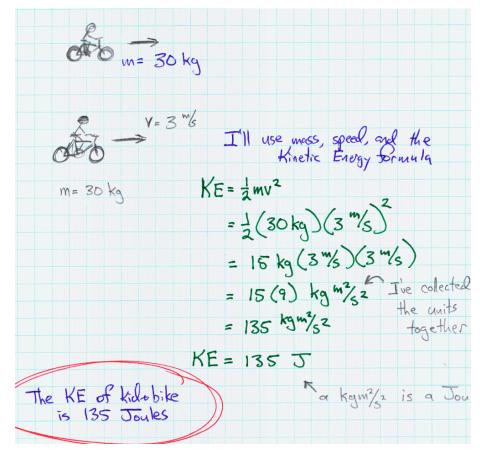
k is the "spring constant" of the $PE_{Elastic} = \frac{1}{2}kx^2$ elastic object that is storing the energy. k is the force required to energy. k is the force required to deform the object a certain amount. For example, if it takes 6 N of force to stretch a spring 1 cm, then k = 6N/cm for that spring.

Power

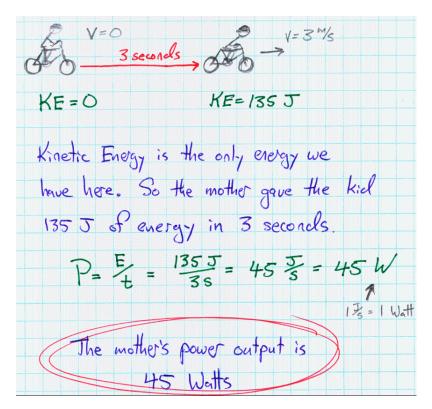

$$P = \frac{E}{t}$$

SI Power units are J/s, or Watts. English power unit is the Horsepower. 1 Hp = 746 W.

PHY 231 ONLY


$$P = \frac{dE}{dt}$$

Power is the rate of change of energy - the slope of a tangent line in a plot of Energy vs. Time. On a plot of E vs. t, a steep slope indicates high power because E is increasing rapidly with t.


Example Problem #1

A mother who is teaching her child to ride a bike pushes the kid at 3 m/s. If the kid and his bike have a combined mass of 30 kg, what is their kinetic energy?

Example Problem #2

In the above problem, it took the mother 3 seconds to get the kid from rest to moving at 3 m/s. What was her power output?

Example Problem #3

It takes 50 lbs of force to stretch a spring 10 cm. How much energy is stored in the spring when it is stretched this much?

Get staff into SI units.

F= 50 lbs
$$\left(\frac{4.4448N}{11b}\right) = 222.4 N$$
 $X = 10 \text{ cm} = .1 \text{ m}$
 $k = \frac{222.4N}{.1m} = 222.4 \text{ /m}$

Now calculate PEBastic for $K = 2224 \text{ /m}$ and $X = 0.1 \text{ m}$
 $PE = \frac{1}{2} K X^2 = \frac{1}{2} \left(22214 \frac{M}{M}\right) \left(.1 \text{ m}\right)^2$
 $= 1112 \frac{M}{M} \left(.01 \text{ m}\right) = 11.12 \text{ N/m}$

ANSWER: 11.12 J

Example Problem #4

A model rocket has a mass of 0.75 kg. It is launched from the ground. The rocket motor fires for 3 seconds. At the end of those 3 seconds the rocket is moving at 300 mph and is 450 yards up in the air. What was the average power output of the motor in Watts?

A	Kinetic and Gravitational Potential Energy	KE= ±mu² PE= Mgy	First - Get everything in SI worths,
*	y= 450 yards (m= .75 kg	3 fb / 1 m / 3,281 ft)) = 411.560 m
A No Energy P= = = = =	v= 300 mph (1/2.	134.10 = 134.10	Soures
	Now Fred KE & PE		¥ op
	PE = .75 kg (9.8;	M)(411.560m) -	3024.966 Nm
	6744.358 5+	3024.9665 =	
	of energy in 3 or $P = \frac{E}{E} = \frac{9769.3}{3.6}$	ecovels 1245 = 3256.	44 %
	ANSWER: 32	-	