DAY 20 -- PHY 231 ONLY

Summary of Primary Topics Covered
Using Calculus with Vectors

Using calculus we can solve vector problems that we can’t solve
with algebra, and we can learn some more about problems that we
can solve with algebra.

We can calculate the rate of precession of a gyroscope.
At right is an edge-on view from the side, showing that
gyroscope has a weight of W, and sits at the end of an

arm of length r. Below is a figure showing the
gyroscope precessing through 360°, as seen from above.
The solution is worked out below. r
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With the equation Q =

rW/I®, we see that the rate of precession

is greater if the gyroscope wheel is heavier (W) or if the arm

the gyroscope is precessing around is longer (r).

The rate of

precession is lower if the wheel is spinning more rapidly (®) or
if it has a higher moment of inertia (I).

We can also apply
calculus to determine
velocity and
acceleration for almost
any vector problem. If
we take a calculus and
vectors approach to
projectile motion, we
don’t get any different
results than we got
with the algebra
approach that we used
for projectile motion
before, but we do get
to look at the problem
in a different way.

Perhaps in the case of
projectile motion there
is no obvious advantage
to the use of calculus
over algebra. However,
for other kinds of
motion using the exact
same approach with
calculus can tell us
things that algebra
cannot tell us. 1In
example problem #2 use
of calculus shows us
clearly that the
acceleration of an
object moving in a
circular path is
directed toward the
center of that circle -
and hence is referred
to as centripetal (or
center-seeking)
acceleration.
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PHY 231 ONLY Example Problem #1:

Show that for a gyroscope that uses a disk as a wheel, the mass of the
gyroscope has no effect on the precession rate.

1f the gyroscope uses a disk as a wheel, then T = .mR%, where R is the radius of
the wheel. The weight is W = mg.

Q= rW/Io
Q = r(mg)/( ¥mR*) ® substitute for W« 1
= rg/( ¥R*)® masses cancel out

Q = 2rg/ WR?

GSo Q does hot depend oh m at all. The precession rate depends only on the
dimensions of the gyroscope (r ¢ R), the gravitational field strength (8), and the
rate at which the wheel is spinning (o).

PHY 231 ONLY Example Problem #2:

A mass m is moving in a horizontal circle on
the end of a string of length D. The mass
is moving with tangential velocity v.

Find an equation for the position vector of
the mass. Then use calculus to find the
acceleration of the mass and the force
acting on the mass in terms of m, D, and v.

Determine the force on the mass for the
following data: m = 2 kg, D= .75 m, v = 10
m/s.

The position vector of the mass is

r=%ij+VY). XY arethe coordinates of the

mass. The only thing that is Changing in this problem is the angle that the string
is making with the coordinate system, SO |et’s illustrate that angle, and show r, X
¢y

D cos (0)
D sin (0)

be
Yy

also, 0 is Changing because m is moving.
0=t and o =V/D.

Note that the maghitude of the vector r is D,
but the directionh of r is constantly Changing
as the mass orbits the Center of the CirCle. r
always point away from the CirCle’s center.



So how

r =D cos(B) 1 + D sin(0) jJ
r =D cos(wt) i + D sin(wt) J

Now tO find acceleration, we take derivatives:

d
v = dr/dt = -——— [D cos(®t) i + D sin(wt) j]
dt

d
D —— [cos(®t) i + sin(wt) J] factor out D because
dt the string length is constant

v =D [-sin(®Ot) ® i + cos(Wt) ® J]

d
a = dv/dt = —— {D [-sin(®t) ® i + cos(wt)® J]}
dt
d
=D —— [-sin(®t) ® i + cos(mWt) ® J]
dt
=D [-cos(®t) ® i — sin(mt)®® J]
a=- 0D [cos(®Wt) i + sin(mt) ] factor out the negative and o*

But if I multiply D through the quantity in brackets I end up with the equation
for r that is hilited above:

a=- 0[D cos(Wt)i + D sin(mt) Jj]
a=- o[r]
a=- (v/D)r ®=VD

In terms of maghitudes, r = D SO

(v/D)? r

a
a = (v/D)?2 D

a = v?/D



Inh terms of directionh, because of the minus

sigh, @ points in the opposite direction as r. m
gince r always points away from the Circle’s

center, @ always points toward the CirCle’s v o5
center.

go, the acceleration is a = V¥/D toward the
center Of the CirCle. Because it is toward
the center, it is a Centripetal (“‘center-
seeking”) acceleration.

The force on the mass is
F=ma-=mv:D

also toward the center Of the CirCle. This is centripetal force. For the data
given,

F = (2 kg) (10 m/s)?/.75 m = 267 kgm?/s®/m = 267 kgm/s®’ = 267 N

PHY 231 ONLY Example Problem #3:

A beam of uniform density, mass m and length ¢ is attached to a vertical
wall. The beam is horizontal. One end is attached to the wall by a
hinge (which can pivot). The other end is supported by a cable, also
of length ¢, which runs from a point B on the beam up to the wall.
Obtain an equation for the tension in the cable in terms of m, g, and
the angle the cable makes with the bar (note that ¢ will not appear in
the equation). Show that the tension in the cable is minimized if the
angle it makes with the bar is 45°.

1 start with making a A
diagram. The beam is
uhiform SO its center Of
mass point (C) is loCated
in the middle of the
beam.
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PHY 231 ONLY Example Problem #4:

A satellite orbits a planet. The
planet has radius P and the
satellite orbit has radius S. On
the planet at point D is a
tracking station with a dish
antenna. As seen by an observer
on the planet, the satellite has
an angular velocity of w.

(a) Come up with an equation
for the angular velocity the
dish must have to track the
satellite.

(b) If the planet is small relative to the satellite, the angular
velocity of the dish should match that of the satellite. Show this

both by graphing and by manipulating the equation you got in part
(a) .

1 start with making a diagram showing the planet, the satellite’s
orbit, and the dish’s loCation. The |oCation Of the satellite is at (X,
¥s). T'Ve oriented my drawing so the dish has location (P,0). Then I
draw in the position vector Of the satellite as seen from the dish.
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To do this derivative 1 use the QuiCckMath web page. Hey —that is
onhe JGLY derivative! TWho wants to do THAT by hand? Not me.
You could use a good calculator, too.

Type it in (I had to [00K up the tah® function — the web page said 1
enter it as ARCTAN)...

Calculus : Differentiate
Basic | Advanced | Help

Enter an expression, enter the variable or variables to differentiate with respect to, set the
options and click the Differentiate button.

EXFRESSION VARIABLE(S) CETIONS
- =
arctan(5¥%sin(wt)/ (5*cos (wWwt) -P) - |
| D Fundctions
i
|
L =
[one per line]
Output Style
| .- &) Traditional _2D | points O Text
¢ | = |
[one per ling] - -
oo iy Reset Differentiate

...ahd press “Differentiate”....



Command
Differentiate
Expression
_1( & Eind w) )
Scositw) — 2
Variables

[

Result

Szwsing[..fw] i, SwocosEw

(5 cos(? wi—F) S coslfw)-F
A2 sin? (7w

15 cosi? w)—F1R +1

Home | News | Help | Links | About |

So here it is...

S ! w 5i.nzl(m£\

B R & 7 7

F\)l f;a‘ni'(u.)iy
(S cos(wt) -P)

+1

S @ COs(éu D l_\_\
(S Cos(ujD -PD

Now to show what happenhs when the
plahet is small...

First, T set up EXCEL or a Calculator to
graph the equation for the §=1, w=1, ahd
P=.75 (this would mean the planet is 0.75
the radius Of the satellite’s orbit and the
satellite moved at g rate Of 1 rad/day)...

w - | Ix | 1

A B.| ¢ D E
1 i 0.05
25 1
3P 0.75
: W I 1!
6 It o t(rad) cos(ot) sinfot] ag,
¥ ] 4] 1 1] 4
8 0.05 0.05 0.99875 0.049979 3.898079
9 0.1 0.1 0.935004 0.099833 3.625279
Lo 0.15 0.15 0.988771 0.149438 3.257004
11 0.2 0.2 0.980067 0.198669 2.867421
L2 0.25 0.25 0.968912 0.247404 2.504465
L3 0.3 0.3 0.955336/ 0.29552 2.189251
14 0.35 0.35 0.939373 0.342898 1.92563
L5 0.4 0.4 0.921061 0.389418 1.709175
L6 0.45 0.45 0.500447 0.434966 1.532671
L7 0.5 0.5 0.877583 0.479426 1.388772
L8 0.55 0.55 0.852525 0.522687 1.271025
19 0.6 0.6 0.825336 0.564642 1.174121
0 0.65 0.65 0.796084 0.605186 1.093825
11 0.7 0.7 0.764842 0.644218 1.026808



...ahd I do this for P=.5, P=.25, etC t0 see what happens for a
smaller and smaller planet size — all the way down to P=0. ] made
graphs Of all these (computers and Sraphing CalCulators are great).
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1 see that at P gets smaller the dish’s motioh comes closer to being
Just @ constant 1 rad/day — the same as w.

Now let’s do thss bYJUSt settmg P= 0 m my equatlon from (a)..
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