
DAY 20 -- PHY 231 ONLY 
 

 

Summary of Primary Topics Covered 

 
Using Calculus with Vectors  

 

Using calculus we can solve vector problems that we can’t solve 

with algebra, and we can learn some more about problems that we 

can solve with algebra. 

 

We can calculate the rate of precession of a gyroscope.  

At right is an edge-on view from the side, showing that 

gyroscope has a weight of W, and sits at the end of an 

arm of length r.  Below is a figure showing the 

gyroscope precessing through 360o, as seen from above.  

The solution is worked out below. 

 

 



 

 
 



With the equation ΩΩΩΩ = rW/Iωωωω, we see that the rate of precession 

is greater if the gyroscope wheel is heavier (W) or if the arm 

the gyroscope is precessing around is longer (r).  The rate of 

precession is lower if the wheel is spinning more rapidly (ω) or 

if it has a higher moment of inertia (I). 

 
We can also apply 

calculus to determine 

velocity and 

acceleration for almost 

any vector problem.  If 

we take a calculus and 

vectors approach to 

projectile motion, we 

don’t get any different 

results than we got 

with the algebra 

approach that we used 

for projectile motion 

before, but we do get 

to look at the problem 

in a different way. 

 

Perhaps in the case of 

projectile motion there 

is no obvious advantage 

to the use of calculus 

over algebra.  However, 

for other kinds of 

motion using the exact 

same approach with 

calculus can tell us 

things that algebra 

cannot tell us.  In 

example problem #2 use 

of calculus shows us 

clearly that the 

acceleration of an 

object moving in a 

circular path is 

directed toward the 

center of that circle – 

and hence is referred 

to as centripetal (or 

center-seeking) 

acceleration.  

 



PHY 231 ONLY Example Problem #1: 

 

Show that for a gyroscope that uses a disk as a wheel, the mass of the 

gyroscope has no effect on the precession rate. 

 

If the gyroscope uses a disk as a wheel, then I = ½mR2, where R is the radius of 

the wheel.  The weight is W = mg. 
 

Ω = rW/Iω 

 

Ω = r(mg)/( ½mR2)ω  substitute for W & I  

   = rg/( ½R2)ω    masses cancel out 

 

Ω = 2rg/ ωR2 

  

So Ω does not depend on m at all.  The precession rate depends only on the 

dimensions of the gyroscope (r & R), the gravitational field strength (g), and the 

rate at which the wheel is spinning (ω). 
 

 

 

PHY 231 ONLY Example Problem #2: 

 

A mass m is moving in a horizontal circle on 

the end of a string of length D.  The mass 

is moving with tangential velocity v. 

 

Find an equation for the position vector of 

the mass.  Then use calculus to find the 

acceleration of the mass and the force 

acting on the mass in terms of m, D, and v.   

 

Determine the force on the mass for the 

following data:  m = 2 kg, D = .75 m, v = 10 

m/s. 

 

The position vector of the mass is  

rrrr = x iiii + y jjjj.  x & y are the coordinates of the 

mass.  The only thing that is changing in this problem is the angle that the string 

is making with the coordinate system, so let’s illustrate that angle, and show rrrr, x 

& y: 

 

x = D cos(θ)  

y = D sin(θ) 

 

also, θ is changing because m is moving.  

 θ = ω t, and ω = v/D. 

 

Note that the magnitude of the vector rrrr is D, 

but the direction of rrrr is constantly changing 

as the mass orbits the center of the circle.  rrrr 

always point away from the circle’s center. 



 

So now  

 

r = D cos(θ) i + D sin(θ) j 
r = D cos(ωt) i + D sin(ωt) j 

 

Now to find acceleration, we take derivatives: 
 

             d 

v = dr/dt = --- [D cos(ωt) i + D sin(ωt) j] 

             dt 

 

               d 

          = D --- [cos(ωt) i + sin(ωt) j]      factor out D because  

               dt            the string length is constant 
 

               

        v = D [-sin(ωt) ω i + cos(ωt) ω j] 

 

 

             d 

a = dv/dt = --- {D [-sin(ωt) ω i + cos(ωt) ω j]} 

             dt 

 

               d 

          = D --- [-sin(ωt) ω i + cos(ωt) ω j] 

               dt 
 

                

          = D [-cos(ωt) ω2 i - sin(ωt) ω2 j] 

               

        a = -  ω2D [cos(ωt) i + sin(ωt)  j]     factor out the negative and ω2 

 

But if I multiply D through the quantity in brackets I end up with the equation 

for rrrr that is hilited above: 
 

        a = -  ω2[D cos(ωt) i + D sin(ωt)  j] 

 

        a = -  ω2[r] 

 

        a = -  (v/D)2 r     ω = v/D 
 

In terms of magnitudes, r = D so 
 

        a = (v/D)2 r  

 

        a = (v/D)2 D  

 

        a = v2/D 

 



In terms of direction, because of the minus 

sign, aaaa points in the opposite direction as rrrr.  

Since rrrr always points away from the circle’s 

center, aaaa always points toward the circle’s 

center. 

 

So, the acceleration is a = v2/D toward the 

center of the circle.  Because it is toward 

the center, it is a centripetal (“center-

seeking”) acceleration. 

 

The force on the mass is 
 

F = m a = m v2/D  

 

also toward the center of the circle.  This is centripetal force.  For the data 

given, 
 

F = (2 kg)(10 m/s)2/.75 m = 267 kgm2/s2/m = 267 kgm/s2 = 267 N 

 
 

PHY 231 ONLY Example Problem #3: 

 

A beam of uniform density, mass m and length l is attached to a vertical 

wall.  The beam is horizontal.  One end is attached to the wall by a 

hinge (which can pivot).  The other end is supported by a cable, also 

of length l, which runs from a point B on the beam up to the wall.  

Obtain an equation for the tension in the cable in terms of m, g, and 

the angle the cable makes with the bar (note that l will not appear in 

the equation).  Show that the tension in the cable is minimized if the 

angle it makes with the bar is 45o. 

 

 

I start with making a 

diagram.  The beam is 

uniform so its center of 

mass point (cm) is located 

in the middle of the 

beam. 





There’s my equation 

and, sure enough, it 

doesn’t have l in it. 



 
 

 
PHY 231 ONLY Example Problem #4: 

 

A satellite orbits a planet.  The 

planet has radius P and the 

satellite orbit has radius S.  On 

the planet at point D is a 

tracking station with a dish 

antenna.  As seen by an observer 

on the planet, the satellite has 

an angular velocity of w. 

 

(a) Come up with an equation 

for the angular velocity the 

dish must have to track the 

satellite.   

 

(b) If the planet is small relative to the satellite, the angular 

velocity of the dish should match that of the satellite.  Show this 

both by graphing and by manipulating the equation you got in part 

(a). 

 

 

I start with making a diagram showing the planet, the satellite’s 

orbit, and the dish’s location.  The location of the satellite is at (xs, 

ys).  I’ve oriented my drawing so the dish has location (P,0).  Then I 

draw in the position vector of the satellite as seen from the dish. 
 



 



 
 

To do this derivative I use the QuickMath web page.  Hey – that is 

one UGLY derivative!  Who wants to do THAT by hand?  Not me.  

You could use a good calculator, too. 

 

Type it in (I had to look up the tan-1 function – the web page said I 

enter it as ARCTAN)… 

 

 
 

…and press “Differentiate”…. 



  
 

So here it is… 

 
 

Now to show what happens when the 

planet is small… 

 

First, I set up EXCEL or a calculator to 

graph the equation for the S=1, w=1, and 

P=.75 (this would mean the planet is 0.75 

the radius of the satellite’s orbit and the 

satellite moved at a rate of 1 rad/day)… 



…and I do this for P=.5, P=.25, etc to see what happens for a 

smaller and smaller planet size – all the way down to P=0.  I made 

graphs of all these (computers and graphing calculators are great). 

 
 

I see that at P gets smaller the dish’s motion comes closer to being 

just a constant 1 rad/day – the same as w. 

 

Now let’s do this by just setting P=0 in my equation from (a)… 

 



 
 

 

 


