DAY 16

Homework Assignment (see syllabus for homework collection information)

1. A boater wants to cross a river that has a current of 5 mph and measures 0.75 miles in width. If the boat can travel at 20 mph through the water, what heading must it take in order to travel from A and arrive directly across the river at B?
2. For a boat trying to cross from point A on one shore of a river to point B on the opposite shore, come up with a general equation for the heading angle in terms of the boat speed $v_{\text {boat }}$ and the current speed $\mathrm{v}_{\text {current }}$. Show that when $\mathrm{v}_{\text {boat }}=\mathrm{v}_{\text {current }}$ the heading is
 90° and when $\mathrm{v}_{\text {current }}=0$ the heading is 0° (measured off a line running from A to B).
3. In the $1^{\text {st }}$ example problem for today, what $4^{\text {th }}$ force \mathbf{F}_{4} would result in
$\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\mathbf{F}_{4}=0 ?$
4. In the figure shown, vectors \mathbf{A} \& \mathbf{B} have the same magnitude (10 m), and the angle that \mathbf{A} makes with the negative axis is the same as the angle \mathbf{B} makes with the positive x axis.

Find $\mathbf{A}+\mathbf{B}$ for the following:

5. In the above problem, discuss what doesn't change with θ and why not.
6. A bird leaves its nest on Monday and flies 50 miles due N. On Tuesday it flies 50 miles due E. On Thursday it flies 25 miles due N again. On Friday it flies 20 miles @ $45^{\circ} \mathrm{S}$ of W , and arrives back at its nest.

How did the bird travel on Wednesday?
7. PHY 231 Only

Rework example \#3 but this time have the tracking telescope located directly under the peak of the projectile's arc.
8. PHY 231 Only

A heavy rock dropped from the top of a 100 m tall cliff is tracked as it falls by a telescope located 100 m from the cliff's base. Calculate the slewing speed of the telescope when the rock is half-way down the cliff and when the rock is about to hit the ground. Can you solve this without using calculus?

