DAY 15

Summary of Primary Topics Covered

Vectors

Vectors are quantities than have magnitude (size), with appropriate units, and direction. Quantities that do not have a direction associated with them are called scalars.

Scalar	Examples	Vector Example					
Time	<pre>t = 10 years (10 years North doesn't make much sense).</pre>	Velocity	<pre>v = 10 mph from the Southwest ("The wind is blowing at 10 mph out of the Southwest")</pre>				
Volume	<i>V = 5 gallons</i> (What would be a 5 gallon <u>South</u> tank?)		NOTE - vectors are represented with boldface letters when typed; with an arrow over them when hand-written.				
Mass	<pre>m = 2 kg (2 kg to the <u>left</u>? That doesn't make sense.)</pre>						

Vectors convey more information than scalars. Consider the statement that a certain place is located "400 meters from the lobby of the JCC-SW Science Building." That is a scalar - no direction is given. It only specifies that something lies somewhere on a circle of radius 400 m that is centered on the Science Building Lobby. Refer to the photo of the JCC-SW campus shown below. The radius extends from the Science Building Lobby.

D = 400 m

However, if I say that something is located "400 meters from the lobby of the JCC-SW Science Building at 61° South of due East", that specifies an exact location – in this case the entrance to the JCPS bus parking lot over by the middle school:

$D = 400 \text{ m} @ 61^{\circ} \text{ S} \text{ of E}$

This is an example of a **position vector**. Note that my D is now **D** (with boldface meaning it's a vector).

Multiplying a Vector by a Scalar

There are three ways to do multiplication with vectors.

Scalar x Vector → Vector Vector x Vector → Scalar (DOT product) Vector x Vector → Vector (CROSS product) The simplest is multiplying a scalar times a vector. The result is a vector -- the scalar only multiplies the magnitude portion of the vector.

For example, in the above picture

 \mathbf{D} = 400 m @ 61° S of E

If I multiply **D** by the scalar k = 0.5 to get a new vector **Z**:

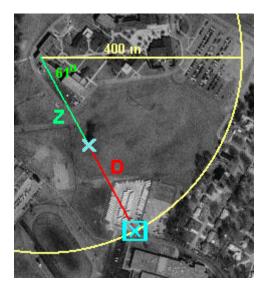
 $\mathbf{Z} = \mathbf{k} \mathbf{D}$

 $\mathbf{Z} = (0.5) (400 \text{ m} \text{ 0} 61^{\circ} \text{ S of E})$

 $Z = (0.5*400) \text{ m} @ 61^{\circ} \text{ S of E}$

 \mathbf{Z} = 200 m @ 61° S of E

 \mathbf{Z} = 200 m @ 61° S of E

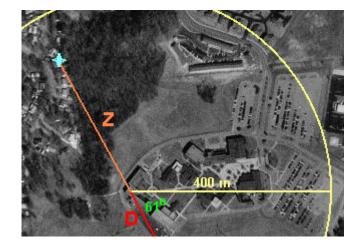


If I multiply **D** by the scalar k = -0.75 to get a new vector **Z**:

 $\mathbf{Z} = \mathbf{k} \mathbf{D}$

- $\mathbf{Z} = (-0.75) (400 \text{ m} \text{ 0} 61^{\circ} \text{ S of E})$
- $Z = (-0.75*300) \text{ m} @ 61^{\circ} \text{ S of E}$
- $\mathbf{Z} = -300 \text{ m} \text{ (} 61^{\circ} \text{ S of E}$
- \mathbf{Z} = 300 m @ 61° N of W

$\mathbf{Z} = 300 \text{ m} (0.61^{\circ} \text{ N} \text{ of } \text{W})$

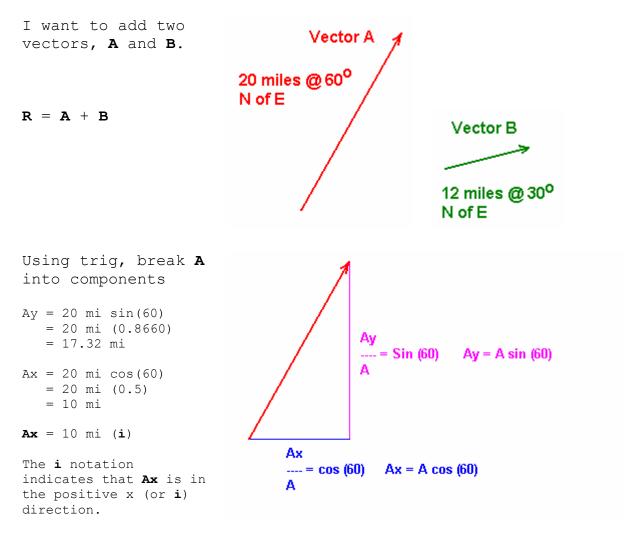


Since position is a vector, so are a lot of other quantities that are simply scalar multiples of position:

position	r	Position is the vector version of <i>distance</i> .						
velocity	v	Velocity is distance (position) over time, and time is a scalar.	v	=	r	't =	(1/t)	r
acceleration	a	Velocity is acceleration over time, and time is a scalar.	a	=	V	't =	(1/t)	v
force	F	Force is mass times acceleration, and mass is a scalar.	F	=	m	a		
momentum	р	Momentum is mass times velocity, and mass is a scalar.	Ρ	=	m	v		

Vector Addition

Adding vectors hinges on using trigonometry to break a vector into perpendicular components. Once that is done, like components can be added normally.



Ay = 17.32 mi (j)

The **j** notation indicates that **Ay** is in the positive y (or **j**) direction.

Using trig, break B into components	By = sin (30)					
By = 12 mi sin(30) = 12 mi (0.5) = 6 mi	Bx B = cos (30) Bx = B cos (30) By = B sin (30) B					
Bx = 12 mi cos(30) = 12 mi (0.5)						
= 10.39 mi	Bx = 10.39 mi (i)					
	The \mathbf{i} notation indicates that \mathbf{Bx} is in the positive x (or \mathbf{i}) direction.					
	By = 6 mi (j)					
	The \mathbf{j} notation indicates that $\mathbf{B}\mathbf{y}$ is in the positive y (or \mathbf{j}) direction.					
Add like components.	7					
Ry = 17.32 mi + 6 mi = 23.32 mi						
Rx = 10 mi + 10.39 mi = 20.39 mi	R Ry = Ay + By					
$R^2 = Rx^2 + Ry^2$						
$R = (Rx^2 + Ry^2)^{0.5}$	θ					
R = 30.98 mi	Rx = Ax + Bx					
$tan(\theta) = Ry/Rx$						
$\tan(\theta) = 23.32/20.39$ = 1.14	$R = 31 \text{ mi} \ 0 \ 48.7^{\circ} \text{ N of E}$					
$\theta = \tan^{-1}(1.14)$						
θ = 48.7°	y A					
	R					

X

Example Problem #1:

A freighter leaves the port of Los Angeles and steams due west at 25 mph for 8 hours. The captain then adjusts the ship's heading to 30° North of West and continues on that heading for 6 hours with no change in speed.

What is the ship's position after 14 hours?

8 hours:
$$V_1 = 25$$
 mph due W
C hours: $V_2 = 25$ mph $\otimes 30^{\circ} N \delta^{\circ} W$
 $\vec{d}_1 = \vec{v}_1 t = (25 mph \otimes 30^{\circ} N \delta W) (56 hr) = 200 mi dre W$
 $\vec{d}_2 = \vec{v}_2 t = (25 mph \otimes 30^{\circ} N \delta W) (6 hr) = 150 mi \otimes 30^{\circ} N \delta W$
Multiplying a vector times a scalar does not
afted direction.
N
 $\vec{d}_2 = \vec{v}_2 t = (25 mph \otimes 30^{\circ} N \delta W) (6 hr) = 150 mi \otimes 30^{\circ} N \delta W$
Multiplying a vector times a scalar does not
afted direction.
N
 $\vec{d}_2 = \vec{d}_2$
 \vec{d}_1 LA:
 \vec{d}_2
 \vec{d}_2
 \vec{d}_1 LA:
 \vec{d}_2
 \vec{d}_1 LA:
 \vec{d}_2
 \vec{d}_2
 \vec{d}_3 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4
 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_2
 \vec{d}_4 \vec{d}_4

