DAY 15

Summary of Primary Topics Covered

Vectors

Vectors are quantities than have magnitude (size), with appropriate units, and direction. Quantities that do not have a direction associated with them are called scalars.

Scalar Examples	Vector Example
```Time t = 10 years (10 years North doesn't make much sense).```	Velocity $\mathbf{v}=10 \mathrm{mph}$ from the Southwest   ("The wind is blowing at 10 mph out of the Southwest")
Volume $V=5$ gallons   (What would be a 5 gallon   South tank?)	NOTE - vectors are represented with boldface letters when typed; with an arrow over them when hand-written.

Mass $\quad m=2 \mathrm{~kg}$
(2 kg to the left? That doesn't make sense.)

Vectors convey more information than scalars. Consider the statement that a certain place is located "400 meters from the lobby of the JCC-SW Science Building." That is a scalar - no direction is given. It only specifies that something lies somewhere on a circle of radius 400 m that is centered on the Science Building Lobby. Refer to the photo of the JCC-SW campus shown below. The radius extends from the Science Building Lobby

$$
D=400 \mathrm{~m}
$$



However, if I say that something is located "400 meters from the lobby of the JCC-SW Science Building at $61^{\circ}$ South of due East", that specifies an exact location - in this case the entrance to the JCPS bus parking lot over by the middle school:

$$
D=400 \mathrm{~m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E}
$$



This is an example of a position vector. Note that my $D$ is now D (with boldface meaning it's a vector).

## Multiplying a Vector by a Scalar

There are three ways to do multiplication with vectors.

```
Scalar x Vector }\boldsymbol{->}\mathrm{ Vector
Vector x Vector }\boldsymbol{->}\mathrm{ Scalar (DOT product)
Vector x Vector }\boldsymbol{->}\mathrm{ Vector (CROSS product)
```

The simplest is multiplying a scalar times a vector. The result is a vector -- the scalar only multiplies the magnitude portion of the vector.

For example, in the above picture
D $=400 \mathrm{~m} @ 61^{\circ} \mathrm{S}$ of E
If I multiply D by the scalar $k=0.5$ to get a new vector Z:

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{k} \mathbf{D} \\
& \mathbf{Z}=(0.5)\left(400 \mathrm{~m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E}\right) \\
& \mathbf{Z}=(0.5 * 400) \mathrm{m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E} \\
& \mathbf{Z}=200 \mathrm{m@} 61^{\circ} \mathrm{S} \text { of } \mathrm{E}
\end{aligned}
$$

$$
\mathbf{Z}=200 \mathrm{~m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E}
$$



If I multiply D by the scalar $k=-0.75$ to get a new vector $\mathbf{Z}$ :

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{k} \mathbf{D} \\
& \mathbf{z}=(-0.75)\left(400 \mathrm{~m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E}\right) \\
& \mathbf{z}=(-0.75 * 300) \mathrm{m} @ 61^{\circ} \mathrm{S} \text { of } \mathrm{E} \\
& \mathbf{Z}=-300 \mathrm{m@} 61^{\circ} \mathrm{S} \text { of } \mathrm{E} \\
& \mathbf{Z}=300 \mathrm{~m} @ 61^{\circ} \mathrm{N} \text { of } \mathrm{W}
\end{aligned}
$$

$$
\mathbf{Z}=300 \mathrm{~m} @ 61^{\circ} \mathrm{N} \text { of } \mathrm{W}
$$



Since position is a vector, so are a lot of other quantities that are simply scalar multiples of position:

| position | $\mathbf{r}$ | Position is the vector <br> version of distance. |
| :--- | :--- | :--- | :--- |
| velocity | $\mathbf{v}$Velocity is distance <br> (position) over time, and <br> time is a scalar. | $\mathbf{v}=\mathbf{r} / \mathbf{t}=(1 / t) \mathbf{r}$ |
| acceleration | $\mathbf{a}$Velocity is acceleration <br> over time, and time is a <br> scalar. | $\mathbf{a}=\mathbf{v} / \mathbf{t}=(1 / t) \mathbf{v}$ |
| force | $\mathbf{F}$Force is mass times <br> acceleration, and mass is a <br> scalar. | $\mathbf{F}=\mathbf{m} \mathbf{a}$ |
| momentum | $\mathbf{P}$Momentum is mass times <br> velocity, and mass is a <br> scalar. | $\mathbf{P}=\mathbf{m} \mathbf{v}$ |

## Vector Addition

Adding vectors hinges on using trigonometry to break a vector into perpendicular components. Once that is done, like components can be added normally.

I want to add two vectors, $\mathbf{A}$ and $\mathbf{B}$.
$\mathbf{R}=\mathbf{A}+\mathrm{B}$

Using trig, break A into components

Ay $=20 \mathrm{mi} \sin (60)$
$=20 \mathrm{mi}(0.8660)$
$=17.32 \mathrm{mi}$
$A x=20 \mathrm{mi} \cos (60)$
$=20 \mathrm{mi}(0.5)$
$=10 \mathrm{mi}$
$\mathbf{A x}=10 \mathrm{mi}$ (i)

The i notation
indicates that $\mathbf{A x}$ is in the positive $x$ (or i) direction.


$$
\mathbf{A} \mathbf{y}=17.32 \mathrm{mi} \quad(\mathbf{j})
$$

The $\mathbf{j}$ notation indicates that $A y$ is in the positive y (or j) direction.

Using trig, break B
into components

$$
\begin{aligned}
\text { By } & =12 \mathrm{mi} \sin (30) \\
& =12 \mathrm{mi}(0.5) \\
& =6 \mathrm{mi}
\end{aligned}
$$

$\mathrm{Bx}=12 \mathrm{mi} \cos (30)$
$=12 \mathrm{mi}(0.5)$
$=10.39 \mathrm{mi}$
$\underset{-}{\mathrm{Bx}} \underset{-\mathrm{-}}{-}=\cos (30)$

$\mathbf{B x}=10.39 \mathrm{mi}(\mathbf{i})$

The i notation indicates that $\mathbf{B x}$ is in the positive x (or i) direction.

By $=6 \mathrm{mi}(\mathbf{j})$

The j notation indicates that By is in the positive y (or j) direction.
Add like components.

Ry $=17.32 \mathrm{mi}+6 \mathrm{mi}$
$=23.32 \mathrm{mi}$
$\mathrm{Rx}=10 \mathrm{mi}+10.39 \mathrm{mi}$
$=20.39 \mathrm{mi}$
$R^{2}=R x^{2}+R y^{2}$
$R=\left(R x^{2}+R y^{2}\right)^{0.5}$
$R=30.98 \mathrm{mi}$
$\tan (\theta)=R y / R x$
$\tan (\theta)=23.32 / 20.39$
$=1.14$
$\theta=\tan ^{-1}(1.14)$
$\theta=48.7^{\circ}$

$\mathbf{R}=31 \mathrm{mi} @ 48.7^{\circ} \mathrm{N}$ of E


## Example Problem \#1:

A freighter leaves the port of Los Angeles and steams due west at 25 mph for 8 hours. The captain then adjusts the ship's heading to $30^{\circ}$ North of West and continues on that heading for 6 hours with no change in speed.

What is the ship's position after 14 hours?
8 hours: $\vec{v}_{1}=25 \mathrm{mph}$ due W
6 hours: $\quad \vec{V}_{2}=25$ ugh $030^{\circ} \mathrm{N}$ of W
$\vec{d}_{1}=\vec{v}_{1} t=(25$ mph $\omega)(8 \mathrm{hr})=200$ mi the $w$
$\overrightarrow{d_{2}}=\vec{v}_{2} t=\left(25\right.$ mph $\left.030^{\circ} N . f W\right)(6 h n)=150$... © $30^{\circ} \mathrm{N} \cdot \mathrm{FW}$
Multiplying a vector times a scalar does not
affect direction.



Break the vectors down into perpendicular components: $d_{1}$ only has an $x$ component: $d_{1 x}=200 \mathrm{mi}(-\uparrow)$

$$
d_{1} y=0
$$

$d_{2}$ has both $x \leftrightarrow y$ components:

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{d_{1 y}}{d_{2}} \\
& d_{2 y}=d_{2} \sin 30^{\circ} \\
& =(150 \mathrm{mi})(.5) \\
& =75 \mathrm{mi}
\end{aligned}
$$

$$
\frac{d_{2 x}}{d_{2}}=\cos 30^{\circ} \quad \begin{align*}
d_{2 x} & =d_{2} \cos 30^{\circ} \\
& =150 \mathrm{mi}(.8660) \\
& =129.904 \mathrm{mi} \tag{s}
\end{align*}
$$

Now add $x$ components $\&$ y components.

$$
\begin{array}{rcc}
X: \begin{array}{cc}
d_{1 x} & 200(-\hat{\imath})
\end{array} & Y: d_{1 y} & 0 \\
+d_{2 x} & 129.904(-\hat{)} & \\
\hline & & +d_{2 y} \\
\hline & 75 & (\hat{\jmath})
\end{array}
$$

These totals now become the $x$ and $y$ components of the resultant vector.


$$
R^{2}=(75 \mathrm{mi})^{2}+(329.904 \mathrm{mi})^{2}
$$

$$
R=\sqrt{114461.649 \mathrm{mi}^{2}}=338.32 \mathrm{mi}
$$

$$
\tan \theta=\frac{75 \mathrm{mi}}{329.904 \mathrm{mi}}=.2273
$$

$$
\theta=\tan ^{-1}(.2273)=12.808^{\circ}
$$

After 14 hours the ship is 338 miles from and $12.8^{\circ} \mathrm{N}$ of $\omega$ of L.A.


