
DAY 13 
 
Summary of Primary Topics Covered 
 
It may be easy to say “rotation is analogous to translation”.  
Putting that knowledge to work will take some practice.  That is 
what we did today – practiced working problems of real 
complexity. 
 
 
 
Example Problem #1: 
 
An “Atwood’s Machine” consists of two masses connected by a 
light string that passes over a pulley. 
 
Mass A is 10 kg. 
Mass B is 5 kg. 
 
The pulley is massless and frictionless.  Find the 
acceleration of the blocks.    
 

 
This problem asks for acceleration so we know we will have to use 
forces and Newton’s laws to solve it – not Energy or Momentum.  
Nothing that we’ve done with Energy or Momentum has involved 
acceleration. 
 
First we draw Free Body Diagrams for both masses: 
 

 
 

 



 
The tensions will be the same since the two blocks are essentially exerting forces 
on each other via the string.  The accelerations will be the same because the 
two blocks are connected by the string.  The only thing is that one will 
accelerate upward and the other will accelerate downward. 
 
Then we apply Newton’s 2nd Law of motion to both: 
 

 
 
That gives two equations in two unknowns.  We can solve these two for “a”: 
 

 
 
The value for a makes sense – it has to be less than 9.8 m/s2 (that would be free-
fall) and more than zero.  And the units worked out, too. 
 
 
 



Example Problem #2: 
 
Re-work the previous problem, except now the pulley has mass 2 kg and 
diameter 15 cm (it is still frictionless).  

 
This problem asks for acceleration so we know we will have to use forces and Newton’s 
laws to solve it – not Energy or Momentum.  Nothing that we’ve done with Energy or 
Momentum has involved acceleration.  So far, same as Example #1. 
 
First we draw Free Body Diagrams for both masses: 
 

 
 

 
 
Now things change from Example #1.  The tensions will not be the same since the two 
blocks are essentially exerting forces the pulley via the string.  The accelerations will be 
the same because the two blocks are connected by the string.  One will accelerate 
upward and the other will accelerate downward. 
 
Then we apply Newton’s 2nd Law of motion to both.  Note T1 and T2 this time. 

 

 



 
That gives two equations in three unknowns.  We need more information.   
 
Draw a FBD for the pulley. 
 
However, the axle’s force holding the pulley up is equal to the 
three downward forces – there is no net up or down motion of 
the pulley – it only rotates.  So we’ll look only at those forces that 
cause rotation – those forces that create torques: 
 

 
 
Now I want to find the rotational inertia of the pulley: 
 

 
 
Now I’ll apply Newton’s 2nd Law for rotation: 

 
 
 



Now I have three equations in three unknowns.  I can solve the problem: 
 

 
 
Do the math: 
 

 
 
The value for a makes sense – it has to be less than 9.8 m/s2 (that would be free-fall) and 
more than zero.  And the units worked out, too.  And it is less than the answer in the 
previous example.  That makes sense because more mass is being accelerated, one way 
or another. 
 

 
 

Example Problem #3: 
 
An “Atwood’s Machine” consists of two masses connected by a light 
string that passes over a pulley. 
 
Mass A is 10 kg. 
Mass B is 5 kg. 
 
The pulley has mass 2 kg and diameter 15 cm.   
 
A 5 kg block sits atop the pulley.  It is held in place by pins 
so that it won’t move side-to-side but its full weight rests on 



the pulley.  The coefficient of friction between the block and the pulley is 
0.5.  Find the acceleration of the blocks.    
 

 
This problem asks for acceleration so we know we will have to use forces and Newton’s 
laws to solve it – not Energy or Momentum.  Nothing that we’ve done with Energy or 
Momentum has involved acceleration. 
 
First we draw Free Body Diagrams for both masses: 
 

 
 

 
 
The tensions will not be the same since the two blocks are essentially exerting forces 
the pulley via the string.  The accelerations will be the same because the two blocks are 
connected by the string.  One will accelerate upward and the other will accelerate 
downward. 
 
Then we apply Newton’s 2nd Law of motion to both.  Note T1 and T2 this time. 
 

 



 
That gives two equations in three unknowns.   
 
Draw a FBD for the pulley. 
 
However, the axle’s force holding the pulley up is equal to 
the four downward forces – there is no net up or down 
motion of the pulley – it only rotates.  So we’ll look only at 
those forces that cause rotation – those forces that 
create torques: 
 

 
 
Note that this time I have a 3rd torque – one produced by the friction. 
 
The rest of this is left as a homework problem.  
 
 

Example Problem #4: 
 
A disk of mass 500 kg, diameter .5 m is rotating on a 
turntable at 500 RPM. 
 
A second disk, same diameter but 300 kg, drops on top 
the first disk.  The second disk is not initially 
rotating.  Friction acts between the two disks. 
 
Find the final angular speed of the two disks in RPM.  
How much energy is turned to heat in this problem?  
 



 



 
 

 
 

Example Problem #5: 
 
Think about what happens in the above problem if the coefficient of friction 
between the two disks is µ = 0.1 (lubricated disks). 
 



Think about what happens in the above problem if the coefficient of friction 
between the two disks is µ = 0.6 (no lubrication between disks). 
 
Do either of the final answers (i.e. 313 RPM; 8032 J) change if the µ value 
changes?  If not, then what changes with the µ value?  

 
The solution to Example #1 never involved µ, so µ can’t have any effect on the final 
answers.  The final speed is 313 RPM and the heat generated is 8032 J regardless of µ. 
 
So what does µ change?  Time.  If µ is large then the two disks will match speeds sooner; 
if µ is small then the two disks match speeds after a longer time.  The heat producing 
power is larger for larger µ because the same heat is 
produced in a shorter time period. 

 
 
Example Problem #6: 
 
A kid is riding on a merry-go-round.  The merry-
go-round is basically a rotating disk, and the kid 
is on its edge.  The mass of the kid is half that 
of the merry-go-round.  What happens to the 
angular velocity of the merry-go-round if the kid 
moves to it’s center? 
 
OK, first let me write 
down some things.  
The speed of the 
merry-go-round 
before the kid moves 
is going to be w.  The 
mass of the kid is m.  
The mass of the 
merry-go-round is M.   
m = ½ M.  The new 
speed of the merry-
go-round after the 
kid has move is wnew. 
 
Let’s do it.  I’m 
treating the merry-go-
round as a disk of 
mass M and radius R.  
I have to look up the 
moment of inertia of 
a disk from the 
tables.  The kid is an 
object of mass m 
sitting on the edge of 
the disk. 

 



 
 
So if the merry-go-round was spinning at 30 RPM when the kid was on its edge it will be spinning 
at 60 RPM when the kid has moved to the center. 
 
 



PHY 231 ONLY 
Example Problem #7: 
 

Find the moment of inertia of a rod of mass M and length L that is 
rotated about one end.  What if the rod is rotated around its mid-
point? 
 

 



 

 
 



 
 

 
 


