DAY 10

Summary of Primary Topics Covered

Some In-Depth, Tougher, Problems

At this point we have learned a lot. We can solve many different kinds of problems. But remember the basics:

- Newton's Laws
- Energy Conservation
- Momentum Conservation

There are different kinds of energy and different kinds of forces, but the basics are always the same. And remember -never make up your own physics! Always do things you know are physically and mathematically valid, and you can't go wrong. Eventually you will arrive at the answer you are looking for.

The example problems given here are tough problems that involve multiple concepts. However, we know enough to tackle any of them.

A blue pickup truck (Ford F -150) is driving along the interstate in the right-hand land going 60 mph . A red $\mathrm{F}-150$ passes the blue truck. The red $\mathrm{F}-150$ is going 75 mph . It is night and the road is damp. Both trucks have anti-lock brakes (ABS) and the μ_{s} for their tires on the pavement is 0.75 .

Just as the red truck pulls even with the blue truck, both drivers see a semi truck jackknifed across the highway, blocking both lanes, the shoulders of the road, and more. The drivers slam on their brakes. The blue truck grinds to a halt with its bumper mere inches from the wreck. How far did it travel (in feet)? How fast is the red truck moving when it plows into the wreck?

The acceleration of the blue truck is
$a=F / m=-\left(\mu_{s} m g\right) / m=-\mu_{s} g$ (negative because the force is opposite the truck's motion).
The F-150 has speed v when it is moving and speed o when it has stopped. Stopping distance can be found using a kinematic equation:
$V^{2}=V_{0}^{2}+2 a\left(x-x_{0}\right)$
$0^{2}=V_{0}{ }^{2}+2\left(-\mu_{s} g\right)(d-0)$
$2 \mu_{s} g d=V_{0}{ }^{2}$

If solve this for d I get this equation:

$$
d=\frac{v^{2}}{2 \mu_{s} g}
$$

```
\(\mathrm{v}=60 \mathrm{mph}=26.82 \mathrm{~m} / \mathrm{s}\)
\(\mu_{s}=1.1\)
\(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\)
```

$$
d=\frac{(26.82 m / s)^{2}}{2(0.75) 9.8 m / s^{2}}=48.94 m=160 f t
$$

So $d=160 \mathrm{ft}$. is the distance the blue truck traveled in coming to a halt.
Now for the red truck. Since it is identical to the blue truck, its acceleration is also going to be $a=-\mu_{s} g=-0.75\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=-7.35 \mathrm{~m} / \mathrm{s}^{2}$. The distance in which it Can slow down is 48.94 m . But its starting speed is 75 mph , or $33.53 \mathrm{~m} / \mathrm{s}$. So using the same kinematic equation
$v^{2}=v_{0}{ }^{2}+2 a\left(x-x_{0}\right)$
$v^{2}=(33.53 \mathrm{~m} / \mathrm{s})^{2}+2\left(-7.35 \mathrm{~m} / \mathrm{s}^{2}\right)(48.94 \mathrm{~m}-0)$
$v^{2}=1124.063 \mathrm{~m}^{2} / \mathrm{s}^{2}-719.418 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$V^{2}=404.645 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$v=20.116 \mathrm{~m} / \mathrm{s}=45 \mathrm{mph}$

So the red truck plows into the wrecked semi going 45 mph . Like they say - "speed kills".

Tough, Multi-Concept Example Problem \#2: (not a "relates to every day life" type of problem):

A 2 kg model rocket has an engine that generates 300 N of thrust for 10 s before running out of fuel. The rocket is launched vertically on a planet where the gravitational field strength is $1 / 6$ what it is on Earth and there is no air. How high does the rocket go? The mass of the fuel is not significant.

NOTE to purists -- it's a large planet, so the g field strength is pretty constant for at least a thousand km above the surface of the planet.

Ill break the problem into two parts - when the fuel.
engine is running

$$
m=2 \mathrm{~kg}
$$

$$
\begin{aligned}
& V=v_{0}+a t=148.371 / \mathrm{s}^{2}(103)=1483.7 \mathrm{~m} / \mathrm{s} \\
& y \cdot y_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& y=0+0(10 \mathrm{~s})+\frac{1}{2}\left(148.37 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~s})^{2} \\
& y=7418.5 \mathrm{~m}
\end{aligned}
$$

|ll

So when the engine burns out the rocket is 7448.5 m high and is moving apuads at $1483.7 \mathrm{~m} / \mathrm{s}$.

Engine not running
Rocket is in free fall.

$$
\begin{aligned}
& a=-g=-1.653 \mathrm{~m} / \mathrm{sz} \\
& v_{0}=1483.7 \mathrm{~m} / \mathrm{s} \\
& y_{0}=7418.5 \mathrm{~m}
\end{aligned}
$$

How high does the rocket go? When the rocket hits the top of its flight $v=0$. Now find $\%$.
Use $v^{2}=v_{0}^{2}+2 a\left(y-y_{0}\right)$

$$
\begin{gathered}
o^{2}=(1483.7 \mathrm{~m} / \mathrm{s})^{2}+2\left(-1.633 \mathrm{~m} / \mathrm{s}^{2}\right)(y-7418.5 \mathrm{~m}) \\
0=2201365.69 \mathrm{~m} / \mathrm{m}^{2}-3.266 \mathrm{~m} / \mathrm{s}^{2}(y-7418.5 \mathrm{~m}) \\
3.266 \mathrm{~m} / \mathrm{/z}(y-7418.5 \mathrm{~m})=2201365.69 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
y-7418.5 \mathrm{~m}=\frac{2201365.69 \mathrm{~m}^{2}}{3.266 \mathrm{~m}}
\end{gathered}
$$

$$
\begin{aligned}
& y-7418.5 \mathrm{~m}=674025.0122 \mathrm{~m} \\
& y=681443.5122 \mathrm{~m}
\end{aligned}
$$

ANSWER: The rocket rises 681 km above the surface.

Tough, Multi-Concept Example Problem \#3 (a problem that some people might relate to, depending on where they work):

A conveyor belt is moving at $400 \mathrm{ft} / \mathrm{min}$. A package that weighs 50 lb drops vertically onto the belt. The μ_{k} between the package and the belt is 0.5.
a) Describe what happens in detail.
b) How far will the package travel from its starting point before it stops sliding on the belt?
c) How much energy went into moving the package? How much heat was generated?
d) How much power was required to keep the belt moving at constant speed?

$$
\begin{gathered}
2.0319 \mathrm{~m} / \mathrm{s}=0+4.9 \mathrm{~m} / \mathrm{s}^{2} t \\
t=.41467 \mathrm{sec}
\end{gathered}
$$

How for does it move?

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2}\left(v+v_{0}\right)+ \\
& x=0+\frac{1}{2}(2.0319 \mathrm{~m} / \mathrm{s}+0)(.41467 \mathrm{~s}) \\
& x=.42128 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& V=2.0319 \mathrm{~m} / \mathrm{s} \\
& V_{0}=0 \\
& a=4.9 \mathrm{~m} / \mathrm{s}^{2} \\
& x_{0}=0
\end{aligned}
$$

(b) ANSWER:

The package moves
.421 m or 1.38 ft

The package had un energy to stat with - it ads up with KE.

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2}=\frac{1}{2}(22.6963 \mathrm{~kg})(2.0319 \mathrm{~m} / \mathrm{s})^{2} \\
& K E=46.85217 \mathrm{~J}
\end{aligned}
$$

The heat gereated is tougher. The package moved. 421 m before moving of at ca/stant speed. But the belt moved at a constant $2.0319 \mathrm{~m} / \mathrm{s}$, so it moved

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2}\left(v+v_{0}\right) t \\
& x=0+\frac{1}{2}(2.0319 \mathrm{~m} / \mathrm{s}+2.0319 \mathrm{~m} / \mathrm{s})(.41467 \mathrm{~s})=.84257 \mathrm{~m}
\end{aligned}
$$

Belt FED

So work friction does as belt is $U=F$ dol

$$
\begin{aligned}
W & =f d \\
& =\mu m g(Q) \\
& =.5(22.6963 \mathrm{~kg})\left(9.8 \frac{\mathrm{Ng}}{\mathrm{~kg}}\right)(.84257 \mathrm{~m}) \\
W & =93.7036 \mathrm{~J}
\end{aligned}
$$

So, of that 93.7036 J from the belt, 46.85217 J wert into moving the package. The rest $46.85 / 4 \mathrm{~J}$ must have gore to heat.
(C) ANSWER:
46.9 J wat into moving package
46.9 J wert in to heat
93.7036 J of Wask are dare in a time of .41467 sec

$$
\begin{aligned}
P=\frac{\omega}{t}=\frac{93.7036 \mathrm{~J}}{.41467 \mathrm{~s}}= & 225.971 \mathrm{Watts} \\
& .303 \mathrm{Hp}
\end{aligned}
$$

(d) ANSWER

226 Watts or .30 Hp

Tough, Multi-Concept Example Problem \#4:

A 3000 lb car moving at 20 mph plows into the back of a 5500 lb truck moving at 10 mph in the same direction. The two stick together after the wreck. How fast will the wreckage be moving after the collision? How much KE was lost in the collision? Where did that energy go?

$$
\begin{aligned}
& 3000 \mathrm{lb}\left(\frac{1 \mathrm{~kg}}{2.2051 \mathrm{~b}}\right) \Rightarrow 1361.78 \mathrm{mg} \\
& 5000 \mathrm{~b} \Rightarrow 2269.63 \mathrm{~kg} \\
& 20 \mathrm{mph}=8.9405 \mathrm{v} / \mathrm{s} \\
& 10 \mathrm{mph}=4.4783 \mathrm{~m} / \mathrm{s} \\
& \begin{array}{l}
\text { Before } \\
m_{1} \xrightarrow{v_{1}} m_{2}+v_{2}
\end{array} \\
& m_{1} \\
& \text { Ur momertam conservation } \\
& \text { Before }=\text { After } \\
& P_{\text {Total }}=P_{\text {TOTAL }} \\
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v+m_{2} v=\left(m_{1}+m_{2}\right) v \\
& 1361.78 \mathrm{~kg}(8.9405 \mathrm{~m} / \mathrm{s})+(2269.63 \mathrm{~kg})(4.4703 \mathrm{~m} / \mathrm{s})=(1361.78 \mathrm{~kg}+2269.63 \mathrm{~kg}) \mathrm{V} \\
& 22268.11 \mathrm{kgm} / \mathrm{s}=(3631.41 \mathrm{~kg}) \mathrm{V}
\end{aligned}
$$

$$
V=6.1321 \mathrm{~m} / \mathrm{s}
$$

ANSWER
Wiecknge moves at
Figwing KE $6.13 \mathrm{~m} / \mathrm{s}$ or 13.7 mph

Before collision:

$$
\begin{aligned}
K E & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2} \\
& =\frac{1}{2}(1361.78 \mathrm{~kg})(8.9405 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(2269.65 \mathrm{~kg})(4.4703 \%)^{2} \\
& =77102.936 \mathrm{~J}
\end{aligned}
$$

After collision

$$
\begin{aligned}
K E & =\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2} \\
& =\frac{1}{2}(1361.78 \mathrm{~kg}+2269.63 \mathrm{~kg})(6.1321 \mathrm{~m} / \mathrm{s})^{2} \\
& =68275.320 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
K E \text { lost } & =77102.936 \mathrm{~J}-68275.320 \mathrm{~J} \\
& =8827.616 \mathrm{~J}
\end{aligned}
$$

ANSWER: 8828 J of KE were lost. This 8828 J wert into heat, sound, and mostly into work done bending up the cars (work of deformation).

